Machine learning with H2O in R / Python

In this blog, we shall discuss about how to use H2O to build a few supervised machine learning models. H2O is a Java-based software for data modeling and general computing, with the primary purpose of it being a distributed, parallel, in memory processing engine. It needs to be installed first (instructions) and by default an H2O instance will run on localhost:54321. Additionally, one needs to install R/python clients to to communicate with the H2O instance. Every new R / python session first needs to initialize a connection between the python client and the H2O cluster.

The problems to be described in this blog appeared in the exercises / projects in the Coursera course “Practical Machine Learning on H2O,” by H2O. The problem statements / descriptions / steps are taken from the course itself. We shall use the concepts from the course, in order to:

  • to build a few machine learning / deep learning models using different algorithms (such as Gradient Boosting, Random Forest, Neural Net, Elastic Net GLM etc.),
  • to review the classic bias-variance tradeoff (overfitting)
  • for hyper-parameter tuning using Grid Search
  • to use AutoML to automatically find a bunch of good performing models
  • to use Stacked Ensembles of models to improve performance.

Problem 1

In this problem we will create an artificial data set, then run random forest / GBM on it with H2O, to create two supervised models for classification, one that is reasonable and another one that shows clear over-fitting. We will use R client (package) for H2O for this problem.

  1. Let’s first create a data set to predict an employee’s job satisfaction in an organization. Let’s say an employee’s job satisfaction depends on the following factors (there are several other factors in general, but we shall limit us to the following few ones):
    • work environment
    • pay
    • flexibility
    • relationship with manager
    • age
set.seed(321) # Let's say an employee's job satisfaction depends on the work environment, pay, flexibility, relationship with manager and age. N <- 1000 # number of samples d <- data.frame(id = 1:N) d$workEnvironment <- sample(1:5, N, replace=TRUE) # on a scale of 1-5, 1 being bad and 5 being good v <- round(rnorm(N, mean=60000, sd=20000)) # 68% are 40-80k v <- pmax(v, 20000) v <- pmin(v, 100000) #table(v) d$pay <- v d$flexibility <- sample(1:5, N, replace=TRUE) # on a scale of 1-5, 1 being bad and 5 being good d$managerRel <- sample(1:5, N, replace=TRUE) # on a scale of 1-5, 1 being bad and 5 being good d$age <- round(runif(N, min=20, max=60)) head(d) # id workEnvironment pay flexibility managerRel age #1 1 2 20000 2 2 21 #2 2 5 75817 1 2 31 #3 3 5 45649 5 3 25 #4 4 1 47157 1 5 55 #5 5 2 69729 2 4 33 #6 6 1 75101 2 2 39 v <- 125 * (d$pay/1000)^2 # e.g., job satisfaction score is proportional to square of pay (hypothetically) v <- v + 250 / log(d$age) # e.g., inversely proportional to log of age v <- v + 5 * d$flexibility v <- v + 200 * d$workEnvironment v <- v + 1000 * d$managerRel^3 v <- v + runif(N, 0, 5000) v <- 100 * (v - 0) / (max(v) - min(v)) # min-max normalization to bring the score in 0-100 d$jobSatScore <- round(v) # Round to nearest integer (percentage)

2. Let’s start h2o, and import the data.

library(h2o) h2o.init() as.h2o(d, destination_frame = "jobsatisfaction") jobsat <- h2o.getFrame("jobsatisfaction") # |===========================================================================================================| 100% # id workEnvironment pay flexibility managerRel age jobSatScore #1 1 2 20000 2 2 21 5 #2 2 5 75817 1 2 31 55 #3 3 5 45649 5 3 25 22 #4 4 1 47157 1 5 55 30 #5 5 2 69729 2 4 33 51 #6 6 1 75101 2 2 39 54 

3. Let’s split the data. Here we plan to use cross-validation.

parts <- h2o.splitFrame( jobsat, ratios = 0.8, destination_frames=c("jobsat_train", "jobsat_test"), seed = 321) train <- h2o.getFrame("jobsat_train") test <- h2o.getFrame("jobsat_test") norw(train) # 794 norw(test) # 206 rows y <- "jobSatScore" x <- setdiff(names(train), c("id", y)) 

4. Let’s choose the gradient boosting model (gbm), and create a model. It’s a regression model since the output variable is treated to be continuous.

# the reasonable model with 10-fold cross-validation m_res <- h2o.gbm(x, y, train, model_id = "model10foldsreasonable", ntrees = 20, nfolds = 10, seed = 123) > h2o.performance(m_res, train = TRUE) # RMSE 2.973807 #H2ORegressionMetrics: gbm #** Reported on training data. ** #MSE: 8.069509 #RMSE: 2.840688 #MAE: 2.266134 #RMSLE: 0.1357181 #Mean Residual Deviance : 8.069509 > h2o.performance(m_res, xval = TRUE) # RMSE 3.299601 #H2ORegressionMetrics: gbm #** Reported on cross-validation data. ** #** 10-fold cross-validation on training data (Metrics computed for combined holdout predictions) ** #MSE: 8.84353 #RMSE: 2.973807 #MAE: 2.320899 #RMSLE: 0.1384746 #Mean Residual Deviance : 8.84353 > h2o.performance(m_res, test) # RMSE 0.6476077 #H2ORegressionMetrics: gbm #MSE: 10.88737 #RMSE: 3.299601 #MAE: 2.524492 #RMSLE: 0.1409274 #Mean Residual Deviance : 10.88737 

5. Let’s try some alternative parameters, to build a different model, and show how the results differ.

# overfitting model with 10-fold cross-validation m_ovf <- h2o.gbm(x, y, train, model_id = "model10foldsoverfitting", ntrees = 2000, max_depth = 20, nfolds = 10, seed = 123) > h2o.performance(m_ovf, train = TRUE) # RMSE 0.004474786 #H2ORegressionMetrics: gbm #** Reported on training data. ** #MSE: 2.002371e-05 #RMSE: 0.004474786 #MAE: 0.0007455944 #RMSLE: 5.032019e-05 #Mean Residual Deviance : 2.002371e-05 > h2o.performance(m_ovf, xval = TRUE) # RMSE 0.6801615 #H2ORegressionMetrics: gbm #** Reported on cross-validation data. ** #** 10-fold cross-validation on training data (Metrics computed for combined holdout predictions) ** #MSE: 0.4626197 #RMSE: 0.6801615 #MAE: 0.4820542 #RMSLE: 0.02323415 #Mean Residual Deviance : 0.4626197 > h2o.performance(m_ovf, test) # RMSE 0.4969761 #H2ORegressionMetrics: gbm #MSE: 0.2469853 #RMSE: 0.4969761 #MAE: 0.3749822 #RMSLE: 0.01698435 #Mean Residual Deviance : 0.2469853

Problem 2

Predict Chocolate Makers Location with Deep Learning Model with H2O

The data is available here: http://coursera.h2o.ai/cacao.882.csv

This is a classification problem. We need to predict “Maker Location.” In other words, using the rating, and the other fields, how accurately we can identify if it is Belgian chocolate, French chocolate, and so on. We shall use python client (library) for H2O for this problem.

  1. Let’s start H2O, load the data set, and split it. By the end of this stage we should have
    three variables, pointing to three data frames on H2O: train, valid, test. However, if you are choosing to use
    cross-validation, you will only have two: train and test.
import H2O import pandas as pd import numpy as np import matplotlib.pyplot as plt df = pd.read_csv('http://coursera.h2o.ai/cacao.882.csv') print(df.shape) # (1795, 9) df.head() 
Maker Origin REF Review Date Cocoa Percent Maker Location Rating Bean Type Bean Origin
0 A. Morin Agua Grande 1876 2016 63% France 3.75 Sao Tome
1 A. Morin Kpime 1676 2015 70% France 2.75 Togo
2 A. Morin Atsane 1676 2015 70% France 3.00 Togo
3 A. Morin Akata 1680 2015 70% France 3.50 Togo
4 A. Morin Quilla 1704 2015 70% France 3.50 Peru
print(df['Maker Location'].unique()) # ['France' 'U.S.A.' 'Fiji' 'Ecuador' 'Mexico' 'Switzerland' 'Netherlands' # 'Spain' 'Peru' 'Canada' 'Italy' 'Brazil' 'U.K.' 'Australia' 'Wales' # 'Belgium' 'Germany' 'Russia' 'Puerto Rico' 'Venezuela' 'Colombia' 'Japan' # 'New Zealand' 'Costa Rica' 'South Korea' 'Amsterdam' 'Scotland' # 'Martinique' 'Sao Tome' 'Argentina' 'Guatemala' 'South Africa' 'Bolivia' # 'St. Lucia' 'Portugal' 'Singapore' 'Denmark' 'Vietnam' 'Grenada' 'Israel' # 'India' 'Czech Republic' 'Domincan Republic' 'Finland' 'Madagascar' # 'Philippines' 'Sweden' 'Poland' 'Austria' 'Honduras' 'Nicaragua' # 'Lithuania' 'Niacragua' 'Chile' 'Ghana' 'Iceland' 'Eucador' 'Hungary' # 'Suriname' 'Ireland'] print(len(df['Maker Location'].unique())) # 60 loc_table = df['Maker Location'].value_counts() print(loc_table) #U.S.A. 764 #France 156 #Canada 125 #U.K. 96 #Italy 63 #Ecuador 54 #Australia 49 #Belgium 40 #Switzerland 38 #Germany 35 #Austria 26 #Spain 25 #Colombia 23 #Hungary 22 #Venezuela 20 #Madagascar 17 #Japan 17 #New Zealand 17 #Brazil 17 #Peru 17 #Denmark 15 #Vietnam 11 #Scotland 10 #Guatemala 10 #Costa Rica 9 #Israel 9 #Argentina 9 #Poland 8 #Honduras 6 #Lithuania 6 #Sweden 5 #Nicaragua 5 #Domincan Republic 5 #South Korea 5 #Netherlands 4 #Amsterdam 4 #Puerto Rico 4 #Fiji 4 #Sao Tome 4 #Mexico 4 #Ireland 4 #Portugal 3 #Singapore 3 #Iceland 3 #South Africa 3 #Grenada 3 #Chile 2 #St. Lucia 2 #Bolivia 2 #Finland 2 #Martinique 1 #Eucador 1 #Wales 1 #Czech Republic 1 #Suriname 1 #Ghana 1 #India 1 #Niacragua 1 #Philippines 1 #Russia 1 #Name: Maker Location, dtype: int64 loc_table.hist() 

As can be seen from the above table, some of the locations have too few records, which will result in poor accuracy of the model to be learnt on after splitting the dataset into train, validation and test datasets. Let’s get rid of the locations that have small number of (< 40) examples in the dataset, to make the results more easily comprehendible, by reducing number of categories in the output variable.

## filter out the countries for which there is < 40 examples present in the dataset loc_gt_40_recs = loc_table[loc_table >= 40].index.tolist() df_sub = df[df['Maker Location'].isin(loc_gt_40_recs)] # now connect to H2O h2o.init() # h2o.clusterStatus() 
H2O cluster uptime: 1 day 14 hours 48 mins
H2O cluster version: 3.13.0.3978
H2O cluster version age: 4 years and 9 days !!!
H2O cluster name: H2O_started_from_R_Sandipan.Dey_kpl973
H2O cluster total nodes: 1
H2O cluster free memory: 2.530 Gb
H2O cluster total cores: 4
H2O cluster allowed cores: 4
H2O cluster status: locked, healthy
H2O connection url: http://localhost:54321
H2O connection proxy: None
H2O internal security: False
H2O API Extensions: Algos, AutoML, Core V3, Core V4
Python version: 3.7.6 final
h2o_df = h2o.H2OFrame(df_sub.values, destination_frame = "cacao_882", column_names=[x.replace(' ', '_') for x in df.columns.tolist()]) #h2o_df.head() #h2o_df.summary() df_cacao_882 = h2o.get_frame('cacao_882') # df_cacao_882.as_data_frame() #df_cacao_882.head() df_cacao_882.describe() 
Maker Origin REF Review_Date Cocoa_Percent Maker_Location Rating Bean_Type Bean_Origin
type enum enum int int enum enum real enum enum
mins 5.0 2006.0 1.0
mean 1025.8849294729039 2012.273942093541 3.1818856718633928
maxs 1952.0 2017.0 5.0
sigma 553.7812013716441 2.978615633185091 0.4911459825968248
zeros 0 0 0
missing 0 0 0 0 0 0 0 0 0
0 A. Morin Agua Grande 1876.0 2016.0 63% France 3.75 <0xA0> Sao Tome
1 A. Morin Kpime 1676.0 2015.0 70% France 2.75 <0xA0> Togo
2 A. Morin Atsane 1676.0 2015.0 70% France 3.0 <0xA0> Togo
3 A. Morin Akata 1680.0 2015.0 70% France 3.5 <0xA0> Togo
4 A. Morin Quilla 1704.0 2015.0 70% France 3.5 <0xA0> Peru
5 A. Morin Carenero 1315.0 2014.0 70% France 2.75 Criollo Venezuela
6 A. Morin Cuba 1315.0 2014.0 70% France 3.5 <0xA0> Cuba
7 A. Morin Sur del Lago 1315.0 2014.0 70% France 3.5 Criollo Venezuela
8 A. Morin Puerto Cabello 1319.0 2014.0 70% France 3.75 Criollo Venezuela
9 A. Morin Pablino 1319.0 2014.0 70% France 4.0 <0xA0> Peru
df_cacao_882['Maker_Location'].table() #Maker_Location Count #Australia 49 #Belgium 40 #Canada 125 #Ecuador 54 #France 156 #Italy 63 #U.K. 96 #U.S.A. 764 train, valid, test = df_cacao_882.split_frame(ratios = [0.8, 0.1], destination_frames = ['train', 'valid', 'test'], seed = 321) print("%d/%d/%d" %(train.nrows, valid.nrows, test.nrows)) # 1082/138/127 

2. Let’s set x to be the list of columns we shall use to train on, to be the column we shall learn. Here it’s going to be a multi-class classification problem.

ignore_fields = ['Review_Date', 'Bean_Type', 'Maker_Location'] # Specify the response and predictor columns y = 'Maker_Location' # multinomial Classification x = [i for i in train.names if not i in ignore_fields]

3. Let’s now create a baseline deep learning model. It is recommended to use all default settings (remembering to
specify either nfolds or validation_frame) for the baseline model.

from h2o.estimators.deeplearning import H2ODeepLearningEstimator model = H2ODeepLearningEstimator() %time model.train(x = x, y = y, training_frame = train, validation_frame = valid) # deeplearning Model Build progress: |██████████████████████████████████████| 100% # Wall time: 6.44 s model.model_performance(train).mean_per_class_error() # 0.05118279569892473 model.model_performance(valid).mean_per_class_error() # 0.26888404593884047 perf_test = model.model_performance(test) print('Mean class error', perf_test.mean_per_class_error()) # Mean class error 0.2149184149184149 print('log loss', perf_test.logloss()) # log loss 0.48864148412056846 print('MSE', perf_test.mse()) # MSE 0.11940531127368789 print('RMSE', perf_test.rmse()) # RMSE 0.3455507361787671 perf_test.hit_ratio_table()
Top-8 Hit Ratios: 
k hit_ratio
1 0.8897638
2 0.9291338
3 0.9527559
4 0.9685039
5 0.9763779
6 0.9921259
7 0.9999999
8 0.9999999
perf_test.confusion_matrix().as_data_frame() 
Australia Belgium Canada Ecuador France Italy U.K. U.S.A. Error Rate
0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.400000 2 / 5
1 0.0 2.0 0.0 0.0 0.0 1.0 0.0 0.0 0.333333 1 / 3
2 0.0 0.0 12.0 0.0 0.0 0.0 0.0 1.0 0.076923 1 / 13
3 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.000000 0 / 3
4 0.0 0.0 0.0 0.0 8.0 2.0 0.0 1.0 0.272727 3 / 11
5 0.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 0.000000 0 / 10
6 0.0 0.0 0.0 1.0 0.0 2.0 4.0 4.0 0.636364 7 / 11
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 71.0 0.000000 0 / 71
8 3.0 2.0 12.0 4.0 8.0 15.0 4.0 79.0 0.110236 14 / 127
model.plot() 

4. Now, let’s create a tuned model, that gives superior performance. However we should use no more than 10 times
the running time of your baseline model, so again our script should be timing the model.

model_tuned = H2ODeepLearningEstimator(epochs=200, distribution="multinomial", activation="RectifierWithDropout", stopping_rounds=5, stopping_tolerance=0, stopping_metric="logloss", input_dropout_ratio=0.2, l1=1e-5, hidden=[200,200,200]) %time model_tuned.train(x, y, training_frame = train, validation_frame = valid) #deeplearning Model Build progress: |██████████████████████████████████████| 100% #Wall time: 30.8 s model_tuned.model_performance(train).mean_per_class_error() #0.0 model_tuned.model_performance(valid).mean_per_class_error() #0.07696485401964853 perf_test = model_tuned.model_performance(test) print('Mean class error', perf_test.mean_per_class_error()) #Mean class error 0.05909090909090909 print('log loss', perf_test.logloss()) #log loss 0.14153784501504524 print('MSE', perf_test.mse()) #MSE 0.03497231075826773 print('RMSE', perf_test.rmse()) #RMSE 0.18700885208531637 perf_test.hit_ratio_table()
Top-8 Hit Ratios: 
k hit_ratio
1 0.9606299
2 0.984252
3 0.984252
4 0.992126
5 0.992126
6 0.992126
7 1.0
8 1.0
perf_test.confusion_matrix().as_data_frame()
Australia Belgium Canada Ecuador France Italy U.K. U.S.A. Error Rate
0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.000000 0 / 5
1 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.000000 0 / 3
2 0.0 0.0 13.0 0.0 0.0 0.0 0.0 0.0 0.000000 0 / 13
3 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.000000 0 / 3
4 0.0 0.0 0.0 0.0 11.0 0.0 0.0 0.0 0.000000 0 / 11
5 0.0 0.0 0.0 0.0 1.0 8.0 0.0 1.0 0.200000 2 / 10
6 0.0 0.0 0.0 0.0 0.0 0.0 8.0 3.0 0.272727 3 / 11
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 71.0 0.000000 0 / 71
8 5.0 3.0 13.0 3.0 12.0 8.0 8.0 75.0 0.039370 5 / 127
model_tuned.plot() 

As can be seen from the above plot, the early-stopping strategy stopped the model to overfit and the model achieves better accruacy on the test dataset..

5. Let’s save both the models, to the local disk, using save_model(), to export the binary version of the model. (Do not export a POJO.)

h2o.save_model(model, 'base_model') h2o.save_model(model_tuned, 'tuned_model')

We may want to include a seed in the model function above to get reproducible results.

Problem 3

Predict Price of a house with Stacked Ensemble model with H2O

The data is available at http://coursera.h2o.ai/house_data.3487.csv. This is a regression problem. We have to predict the “price” of a house given different feature values. We shall use python client for H2O again for this problem.

The data needs to be split into train and test, using 0.9 for the ratio, and a seed of 123. That should give 19,462 training rows and 2,151 test rows. The target is an RMSE below $123,000.

  1. Let’s start H2O, load the chosen dataset and follow the data manipulation steps. For example, we can split date into year and month columns. We can then optionally combine them into a numeric date column. At the end of this step we shall have traintestx and y variables, and possibly valid also. The below shows the code snippet to do this.
import h2o import pandas as pd import numpy as np import matplotlib.pyplot as plt import random from time import time h2o.init() url = "http://coursera.h2o.ai/house_data.3487.csv" house_df = h2o.import_file(url, destination_frame = "house_data") # Parse progress: |█████████████████████████████████████████████████████████| 100%

Preporcessing

house_df['year'] = house_df['date'].substring(0,4).asnumeric() house_df['month'] = house_df['date'].substring(4,6).asnumeric() house_df['day'] = house_df['date'].substring(6,8).asnumeric() house_df = house_df.drop('date') house_df.head()
id price bedrooms bathrooms sqft_living sqft_lot floors waterfront view condition grade sqft_above sqft_basement yr_built yr_renovated zipcode lat long sqft_living15 sqft_lot15 year month day
7.1293e+09 221900 3 1 1180 5650 1 0 0 3 7 1180 0 1955 0 98178 47.5112 -122.257 1340 5650 2014 10 13
6.4141e+09 538000 3 2.25 2570 7242 2 0 0 3 7 2170 400 1951 1991 98125 47.721 -122.319 1690 7639 2014 12 9
5.6315e+09 180000 2 1 770 10000 1 0 0 3 6 770 0 1933 0 98028 47.7379 -122.233 2720 8062 2015 2 25
2.4872e+09 604000 4 3 1960 5000 1 0 0 5 7 1050 910 1965 0 98136 47.5208 -122.393 1360 5000 2014 12 9
1.9544e+09 510000 3 2 1680 8080 1 0 0 3 8 1680 0 1987 0 98074 47.6168 -122.045 1800 7503 2015 2 18
7.23755e+09 1.225e+06 4 4.5 5420 101930 1 0 0 3 11 3890 1530 2001 0 98053 47.6561 -122.005 4760 101930 2014 5 12
1.3214e+09 257500 3 2.25 1715 6819 2 0 0 3 7 1715 0 1995 0 98003 47.3097 -122.327 2238 6819 2014 6 27
2.008e+09 291850 3 1.5 1060 9711 1 0 0 3 7 1060 0 1963 0 98198 47.4095 -122.315 1650 9711 2015 1 15
2.4146e+09 229500 3 1 1780 7470 1 0 0 3 7 1050 730 1960 0 98146 47.5123 -122.337 1780 8113 2015 4 15
3.7935e+09 323000 3 2.5 1890 6560 2 0 0 3 7 1890 0 2003 0 98038 47.3684 -122.031 2390 7570 2015 3 12
house_df.describe() 
id price bedrooms bathrooms sqft_living sqft_lot floors waterfront view condition grade sqft_above sqft_basement yr_built yr_renovated zipcode lat long sqft_living15 sqft_lot15 year month day
type int int int real int int real int int int int int int int int int real real int int int int int
mins 1000102.0 75000.0 0.0 0.0 290.0 520.0 1.0 0.0 0.0 1.0 1.0 290.0 0.0 1900.0 0.0 98001.0 47.1559 -122.519 399.0 651.0 2014.0 1.0 1.0
mean 4580301520.864987 540088.1417665284 3.370841623097218 2.114757321982139 2079.899736269819 15106.96756581695 1.4943089807060526 0.007541757275713691 0.23430342849211097 3.4094295100171164 7.6568731781798105 1788.3906907879518 291.50904548188555 1971.0051357979064 84.4022579003377 98077.93980474674 47.56005251931665 -122.21389640494158 1986.5524915560036 12768.45565169118 2014.3229537778102 6.574422801091883 15.688196918521294
maxs 9900000190.0 7700000.0 33.0 8.0 13540.0 1651359.0 3.5 1.0 4.0 5.0 13.0 9410.0 4820.0 2015.0 2015.0 98199.0 47.7776 -121.315 6210.0 871200.0 2015.0 12.0 31.0
sigma 2876565571.3120522 367127.19648270035 0.930061831147451 0.7701631572177408 918.4408970468095 41420.51151513551 0.5399888951423489 0.08651719772788766 0.7663175692736117 0.6507430463662044 1.1754587569743344 828.0909776519175 442.57504267746685 29.373410802386235 401.67924001917555 53.50502625747248 0.13856371024192368 0.14082834238139297 685.3913042527788 27304.179631338524 0.4676160310451536 3.1153077787263648 8.635062534286034
zeros 0 0 13 10 0 0 0 21450 19489 0 0 0 13126 0 20699 0 0 0 0 0 0 0 0
missing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 7129300520.0 221900.0 3.0 1.0 1180.0 5650.0 1.0 0.0 0.0 3.0 7.0 1180.0 0.0 1955.0 0.0 98178.0 47.5112 -122.257 1340.0 5650.0 2014.0 10.0 13.0
1 6414100192.0 538000.0 3.0 2.25 2570.0 7242.0 2.0 0.0 0.0 3.0 7.0 2170.0 400.0 1951.0 1991.0 98125.0 47.721000000000004 -122.319 1690.0 7639.0 2014.0 12.0 9.0
2 5631500400.0 180000.0 2.0 1.0 770.0 10000.0 1.0 0.0 0.0 3.0 6.0 770.0 0.0 1933.0 0.0 98028.0 47.7379 -122.233 2720.0 8062.0 2015.0 2.0 25.0
3 2487200875.0 604000.0 4.0 3.0 1960.0 5000.0 1.0 0.0 0.0 5.0 7.0 1050.0 910.0 1965.0 0.0 98136.0 47.5208 -122.393 1360.0 5000.0 2014.0 12.0 9.0
4 1954400510.0 510000.0 3.0 2.0 1680.0 8080.0 1.0 0.0 0.0 3.0 8.0 1680.0 0.0 1987.0 0.0 98074.0 47.616800000000005 -122.045 1800.0 7503.0 2015.0 2.0 18.0
5 7237550310.0 1225000.0 4.0 4.5 5420.0 101930.0 1.0 0.0 0.0 3.0 11.0 3890.0 1530.0 2001.0 0.0 98053.0 47.6561 -122.005 4760.0 101930.0 2014.0 5.0 12.0
6 1321400060.0 257500.0 3.0 2.25 1715.0 6819.0 2.0 0.0 0.0 3.0 7.0 1715.0 0.0 1995.0 0.0 98003.0 47.3097 -122.327 2238.0 6819.0 2014.0 6.0 27.0
7 2008000270.0 291850.0 3.0 1.5 1060.0 9711.0 1.0 0.0 0.0 3.0 7.0 1060.0 0.0 1963.0 0.0 98198.0 47.4095 -122.315 1650.0 9711.0 2015.0 1.0 15.0
8 2414600126.0 229500.0 3.0 1.0 1780.0 7470.0 1.0 0.0 0.0 3.0 7.0 1050.0 730.0 1960.0 0.0 98146.0 47.5123 -122.337 1780.0 8113.0 2015.0 4.0 15.0
9 3793500160.0 323000.0 3.0 2.5 1890.0 6560.0 2.0 0.0 0.0 3.0 7.0 1890.0 0.0 2003.0 0.0 98038.0 47.3684 -122.031 2390.0 7570.0 2015.0 3.0 12.0
plt.hist(house_df.as_data_frame()['price'].tolist(), bins=np.linspace(0,10**6,1000)) plt.show()

We shall use cross-validation and not a validation dataset.

train, test = house_df.split_frame(ratios=[0.9], destination_frames = ['train', 'test'], seed=123) print("%d/%d" %(train.nrows, test.nrows)) # 19462/2151 ignore_fields = ['id', 'price'] x = [i for i in train.names if not i in ignore_fields] y = 'price' 

2. Let’s now train at least four different models on the preprocessed datseet, using at least three different supervised algorithms. Let’s save all the models.

from h2o.estimators.gbm import H2OGradientBoostingEstimator from h2o.estimators.random_forest import H2ORandomForestEstimator from h2o.estimators.glm import H2OGeneralizedLinearEstimator from h2o.estimators.deeplearning import H2ODeepLearningEstimator from h2o.estimators.stackedensemble import H2OStackedEnsembleEstimator nfolds = 5 # for cross-validation 

Let’s first fit a GLM model. The best performing α hyperparameter value (for controlling L1 vs. L2 regularization) for GLM will be found using GridSearch, as shown in the below code snippet.

g= h2o.grid.H2OGridSearch( H2OGeneralizedLinearEstimator(family="gaussian", nfolds=nfolds, fold_assignment="Modulo", keep_cross_validation_predictions=True, lambda_search=True), hyper_params={ "alpha":[x * 0.01 for x in range(0,100)], }, search_criteria={ "strategy":"RandomDiscrete", "max_models":8, "stopping_metric": "rmse", "max_runtime_secs":60 } ) g.train(x, y, train) g #glm Grid Build progress: |████████████████████████████████████████████████| 100% # alpha \ #0 [0.61] #1 [0.78] #2 [0.65] #3 [0.13] #4 [0.35000000000000003] #5 [0.05] #6 [0.32] #7 [0.55] # model_ids residual_deviance #0 Grid_GLM_train_model_python_1628864392402_41_model_3 2.626981989511134E15 #1 Grid_GLM_train_model_python_1628864392402_41_model_6 2.626981989511134E15 #2 Grid_GLM_train_model_python_1628864392402_41_model_5 2.626981989511134E15 #3 Grid_GLM_train_model_python_1628864392402_41_model_2 2.626981989511134E15 #4 Grid_GLM_train_model_python_1628864392402_41_model_4 2.626981989511134E15 #5 Grid_GLM_train_model_python_1628864392402_41_model_7 2.626981989511134E15 #6 Grid_GLM_train_model_python_1628864392402_41_model_0 2.626981989511134E15 #7 Grid_GLM_train_model_python_1628864392402_41_model_1 2.626981989511134E15 

Model 1

model_GLM= H2OGeneralizedLinearEstimator( family='gaussian', #'gamma', model_id='glm_house', nfolds=nfolds, alpha=0.61, fold_assignment="Modulo", keep_cross_validation_predictions=True) %time model_GLM.train(x, y, train) #glm Model Build progress: |███████████████████████████████████████████████| 100% #Wall time: 259 ms model_GLM.cross_validation_metrics_summary().as_data_frame()
mean sd cv_1_valid cv_2_valid cv_3_valid cv_4_valid cv_5_valid
0 mae 230053.23 715.8795 229225.16 230969.69 228503.45 230529.47 231038.42
1 mean_residual_deviance 1.31780157E11 4.5671977E9 1.32968604E11 1.41431144E11 1.31364495E11 1.32024402E11 1.21112134E11
2 mse 1.31780157E11 4.5671977E9 1.32968604E11 1.41431144E11 1.31364495E11 1.32024402E11 1.21112134E11
3 null_deviance 5.25455325E14 1.80834544E13 5.3056184E14 5.636807E14 5.23549568E14 5.26203388E14 4.83281095E14
4 r2 0.023522535 4.801036E-4 0.024299357 0.023168933 0.022531934 0.023340257 0.024272196
5 residual_deviance 5.12943247E14 1.7808912E13 5.17646773E14 5.5059142E14 5.11270625E14 5.13838982E14 4.71368433E14
6 rmse 362905.53 6314.0225 364648.6 376073.3 362442.4 363351.62 348011.7
7 rmsle 0.53911585 0.0047404445 0.54277176 0.5389013 0.5275475 0.53846484 0.54789394
model_GLM.model_performance(test) #ModelMetricsRegressionGLM: glm #** Reported on test data. ** #MSE: 128806123545.59714 #RMSE: 358895.7000934911 #MAE: 233890.6933813204 #RMSLE: 0.5456714021880726 #R^2: 0.03102347771355851 #Mean Residual Deviance: 128806123545.59714 #Null degrees of freedom: 2150 #Residual degrees of freedom: 2129 #Null deviance: 285935013037402.7 #Residual deviance: 277061971746579.44 #AIC: 61176.23965800522

As can be seen from above, GLM could not achieve the target of RMSE below $123k neither on cross-validation nor on test dataset.

The below models (GBMDRF and DL) and the corresponding parameters were found with AutoML leaderboard and 
GridSearch, along with some manual tuning.

from h2o.automl import H2OAutoML model_auto = H2OAutoML(max_runtime_secs=60, seed=123) model_auto.train(x, y, train) # AutoML progress: |████████████████████████████████████████████████████████| 100% # Parse progress: |█████████████████████████████████████████████████████████| 100% model_auto.leaderboard
model_id mean_residual_deviance rmse mae rmsle
GBM_grid_0_AutoML_20210814_005121_model_0 2.01725e+10 142030 77779.1 0.184269
GBM_grid_0_AutoML_20210814_005121_model_1 2.6037e+10 161360 93068.1 0.218365
DRF_0_AutoML_20210814_005121 3.27251e+10 180901 102782 0.243474
XRT_0_AutoML_20210814_005121 3.53492e+10 188014 104259 0.246899
GBM_grid_0_AutoML_20210813_201225_model_0 5.99803e+10 244909 153548 0.351959
GBM_grid_0_AutoML_20210813_201225_model_2 6.09613e+10 246903 152570 0.349919
GBM_grid_0_AutoML_20210813_201225_model_1 6.09941e+10 246970 153096 0.350852
GBM_grid_0_AutoML_20210813_201225_model_3 6.22174e+10 249434 153105 0.350598
DeepLearning_0_AutoML_20210813_201225 6.39672e+10 252917 163993 0.378761
DRF_0_AutoML_20210813_201225 6.76936e+10 260180 158078 0.360337
model_auto.leader.model_performance(test) # model_auto.leader.explain(test) #ModelMetricsRegression: gbm #** Reported on test data. ** #MSE: 17456681023.716145 #RMSE: 132123.73376390839 #MAE: 77000.00253466706 #RMSLE: 0.1899899418603569 #Mean Residual Deviance: 17456681023.716145 model = h2o.get_model(model_auto.leaderboard[4, 'model_id']) # get model by model_id print(model.params['model_id']['actual']['name']) print(model.model_performance(test).rmse()) [(k, v) for (k, v) in model.params.items() if v['default'] != v['actual'] and \ not k in ['model_id', 'training_frame', 'validation_frame', 'nfolds', 'keep_cross_validation_predictions', 'seed', 'response_column', 'fold_assignment', 'ignored_columns']] # GBM_grid_0_AutoML_20210813_201225_model_0 # 235011.60404473927 # [('score_tree_interval', {'default': 0, 'actual': 5}), # ('ntrees', {'default': 50, 'actual': 60}), # ('max_depth', {'default': 5, 'actual': 6}), # ('min_rows', {'default': 10.0, 'actual': 1.0}), # ('stopping_tolerance', {'default': 0.001, 'actual': 0.008577452408351779}), # ('seed', {'default': -1, 'actual': 123}), # ('distribution', {'default': 'AUTO', 'actual': 'gaussian'}), # ('sample_rate', {'default': 1.0, 'actual': 0.8}), # ('col_sample_rate', {'default': 1.0, 'actual': 0.8}), # ('col_sample_rate_per_tree', {'default': 1.0, 'actual': 0.8})]

Model 2

model_GBM = H2OGradientBoostingEstimator( model_id='gbm_house', nfolds=nfolds, ntrees=500, fold_assignment="Modulo", keep_cross_validation_predictions=True, seed=123) %time model_GBM.train(x, y, train) #gbm Model Build progress: |███████████████████████████████████████████████| 100% #Wall time: 54.9 s model_GBM.cross_validation_metrics_summary().as_data_frame()
mean sd cv_1_valid cv_2_valid cv_3_valid cv_4_valid cv_5_valid
0 mae 64136.496 912.2387 62751.688 66573.63 63946.31 63873.707 63537.137
1 mean_residual_deviance 1.38268457E10 1.43582912E9 1.24595825E10 1.75283814E10 1.2894718E10 1.43893801E10 1.18621655E10
2 mse 1.38268457E10 1.43582912E9 1.24595825E10 1.75283814E10 1.2894718E10 1.43893801E10 1.18621655E10
3 r2 0.8979097 0.0075696795 0.90857375 0.87893564 0.9040519 0.89355356 0.90443367
4 residual_deviance 1.38268457E10 1.43582912E9 1.24595825E10 1.75283814E10 1.2894718E10 1.43893801E10 1.18621655E10
5 rmse 117288.305 5928.7188 111622.5 132394.8 113554.914 119955.74 108913.57
6 rmsle 0.16441989 0.0025737707 0.16231671 0.17041409 0.15941188 0.16528262 0.16467415

As can be seen from the above table (row 5, column 1), the mean RMSE for cross-validation is 117288.305, which is below $123k.

model_GBM.model_performance(test) #ModelMetricsRegression: gbm #** Reported on test data. ** #MSE: 14243079402.729088 #RMSE: 119344.37315068142 #MAE: 65050.344749203745 #RMSLE: 0.16421689257411975 #Mean Residual Deviance: 14243079402.729088

As can be seen from above, GBM could achieve the target of RMSE below $123k on test dataset.

Now, let’s try random forest model by finding best parameters with Grid Search:

g= h2o.grid.H2OGridSearch( H2ORandomForestEstimator( nfolds=nfolds, fold_assignment="Modulo", keep_cross_validation_predictions=True, seed=123), hyper_params={ "ntrees": [20, 25, 30], "stopping_tolerance": [0.005, 0.006, 0.0075], "max_depth": [20, 50, 100], "min_rows": [5, 7, 10] }, search_criteria={ "strategy":"RandomDiscrete", "max_models":10, "stopping_metric": "rmse", "max_runtime_secs":60 } ) g.train(x, y, train) #drf Grid Build progress: |████████████████████████████████████████████████| 100% g # max_depth min_rows ntrees stopping_tolerance \ #0 100 5.0 20 0.006 #1 100 5.0 20 0.005 #2 100 5.0 20 0.005 #3 100 7.0 30 0.006 #4 50 10.0 25 0.006 #5 50 10.0 20 0.005 # model_ids residual_deviance #0 Grid_DRF_train_model_python_1628864392402_40_model_0 2.0205038467456142E10 #1 Grid_DRF_train_model_python_1628864392402_40_model_5 2.0205038467456142E10 #2 Grid_DRF_train_model_python_1628864392402_40_model_1 2.0205038467456142E10 #3 Grid_DRF_train_model_python_1628864392402_40_model_3 2.099520493338354E10 #4 Grid_DRF_train_model_python_1628864392402_40_model_2 2.260686283035833E10 #5 Grid_DRF_train_model_python_1628864392402_40_model_4 2.279037520277947E10 

Model 3

model_RF = H2ORandomForestEstimator( model_id='rf_house', nfolds=nfolds, ntrees=20, fold_assignment="Modulo", keep_cross_validation_predictions=True, seed=123) %time model_RF.train(x, y, train) #drf Model Build progress: |███████████████████████████████████████████████| 100% #Wall time: 13.2 s model_RF.cross_validation_metrics_summary().as_data_frame()
mean sd cv_1_valid cv_2_valid cv_3_valid cv_4_valid cv_5_valid
0 mae 72734.0 1162.9153 73242.26 75062.21 73461.65 71646.195 70257.7
1 mean_residual_deviance 1.8545494E10 2.2018921E9 1.79095654E10 2.45911347E10 1.74433321E10 1.71117425E10 1.56716954E10
2 mse 1.8545494E10 2.2018921E9 1.79095654E10 2.45911347E10 1.74433321E10 1.71117425E10 1.56716954E10
3 r2 0.8632202 0.011770816 0.8685827 0.8301549 0.8702062 0.8734147 0.8737426
4 residual_deviance 1.8545494E10 2.2018921E9 1.79095654E10 2.45911347E10 1.74433321E10 1.71117425E10 1.56716954E10
5 rmse 135742.78 7726.2373 133826.62 156815.61 132073.2 130811.86 125186.64
6 rmsle 0.18275535 0.0020155373 0.18441868 0.18689767 0.17945778 0.1833288 0.17967385
model_RF.model_performance(test) ModelMetricsRegression: drf ** Reported on test data. ** MSE: 16405336914.530426 RMSE: 128083.3202041953 MAE: 71572.37981480274 RMSLE: 0.17712324625977907 Mean Residual Deviance: 16405336914.530426

As can be seen from above, DRF just missed the target of RMSE below $123k for on both the cross-validation and on test dataset.

Now, let’s try to fit a deep learning model, again tuning the parameters with Grid Search.

g= h2o.grid.H2OGridSearch( H2ODeepLearningEstimator( nfolds=nfolds, fold_assignment="Modulo", keep_cross_validation_predictions=True, reproducible=True, seed=123), hyper_params={ "epochs": [20, 25], "hidden": [[20, 20, 20], [25, 25, 25]], "stopping_rounds": [0, 5], "stopping_tolerance": [0.006] }, search_criteria={ "strategy":"RandomDiscrete", "max_models":10, "stopping_metric": "rmse", "max_runtime_secs":60 } ) g.train(x, y, train) g #deeplearning Grid Build progress: |███████████████████████████████████████| 100% # epochs hidden stopping_rounds stopping_tolerance \ #0 16.79120554889533 [25, 25, 25] 0 0.006 #1 3.1976799968879086 [25, 25, 25] 0 0.006 # model_ids \ #0 Grid_DeepLearning_train_model_python_1628864392402_55_model_0 #1 Grid_DeepLearning_train_model_python_1628864392402_55_model_1 # residual_deviance #0 1.6484562934855278E10 #1 2.1652538389322113E10 

Model 4

model_DL = H2ODeepLearningEstimator(epochs=30, model_id='dl_house', nfolds=nfolds, stopping_rounds=7, stopping_tolerance=0.006, hidden=[30, 30, 30], reproducible=True, fold_assignment="Modulo", keep_cross_validation_predictions=True, seed=123 ) %time model_DL.train(x, y, train) #deeplearning Model Build progress: |██████████████████████████████████████| 100% #Wall time: 55.7 s model_DL.cross_validation_metrics_summary().as_data_frame()
mean sd cv_1_valid cv_2_valid cv_3_valid cv_4_valid cv_5_valid
0 mae 72458.19 1241.8936 71992.18 73569.984 75272.75 70553.38 70902.65
1 mean_residual_deviance 1.48438886E10 5.5005555E8 1.42477005E10 1.59033723E10 1.54513889E10 1.48586271E10 1.37583514E10
2 mse 1.48438886E10 5.5005555E8 1.42477005E10 1.59033723E10 1.54513889E10 1.48586271E10 1.37583514E10
3 r2 0.8899759 0.0023493338 0.89545286 0.8901592 0.885028 0.89008224 0.88915724
4 residual_deviance 1.48438886E10 5.5005555E8 1.42477005E10 1.59033723E10 1.54513889E10 1.48586271E10 1.37583514E10
5 rmse 121793.58 2259.6975 119363.734 126108.58 124303.62 121895.97 117296.0
6 rmsle 0.18431115 0.0011469581 0.18251595 0.18650953 0.18453318 0.18555655 0.18244053

As can be seen from the above table (row 5, column 1), the mean RMSE for cross-validation is 121793.58, which is below $123k.

model_DL.model_performance(test) #ModelMetricsRegression: deeplearning #** Reported on test data. ** #MSE: 14781990070.095192 #RMSE: 121581.20771770278 #MAE: 72522.60487846025 #RMSLE: 0.1834924698171073 #Mean Residual Deviance: 14781990070.095192

As can be seen from above, the deep learning model could achieve the target of RMSE below $123k on test dataset.

3. Finally, let’s train a stacked ensemble of the models created in earlier steps. We may need to repeat steps two and three until the best model (which is usually the ensemble model, but does not have to be) has the minimum required performance on the cross-validation dataset. Note: only one model has to achieve the minimum required performance. If multiple models achieve it, so we need to choose the best performing one.

models = [model_GBM.model_id, model_RF.model_id, model_DL.model_id] #model_GLM.model_id, model_SE = H2OStackedEnsembleEstimator(model_id = 'se_gbm_dl_house', base_models=models) %time model_SE.train(x, y, train) #stackedensemble Model Build progress: |███████████████████████████████████| 100% #Wall time: 2.67 s #model_SE.model_performance(test) #ModelMetricsRegressionGLM: stackedensemble #** Reported on test data. ** #MSE: 130916347835.45828 #RMSE: 361823.6418967924 #MAE: 236448.3672215734 #RMSLE: 0.5514878971097109 #R^2: 0.015148783736682492 #Mean Residual Deviance: 130916347835.45828 #Null degrees of freedom: 2150 #Residual degrees of freedom: 2147 #Null deviance: 285935013037402.7 #Residual deviance: 281601064194070.75 #AIC: 61175.193832813566

As can be seen from above, the stacked ensemble model could not reach the required performance, neither on the cross-validation, nor on the test dataset.

4. Now let’s get the performance on the test data of the chosen model/ensemble, and confirm that this also reaches the minimum target on the test data.

Best Model

The model that performs best in terms of mean cross-validation RMSE and RMSE on the test dataset (both of them are below the minimum target $123k) is the gradient boositng model (GBM), which is the Model 2 above.

model_GBM.model_performance(test) #ModelMetricsRegression: gbm #** Reported on test data. ** #MSE: 14243079402.729088 #RMSE: 119344.37315068142 #MAE: 65050.344749203745 #RMSLE: 0.16421689257411975 #Mean Residual Deviance: 14243079402.729088 # save the models h2o.save_model(model_GBM, 'best_model (GBM)') # the final best model h2o.save_model(model_SE, 'SE_model') h2o.save_model(model_GBM, 'GBM_model') h2o.save_model(model_RF, 'RF_model') h2o.save_model(model_GLM, 'GLM_model') h2o.save_model(model_DL, 'DL_model')

Source Prolead brokers usa